Rapid evolution of body fluid regulation following independent invasions into freshwater habitats.

نویسندگان

  • Carol Eunmi Lee
  • Marijan Posavi
  • Guy Charmantier
چکیده

Colonizations from marine to freshwater environments constitute among the most dramatic evolutionary transitions in the history of life. Colonizing dilute environments poses great challenges for acquiring essential ions against steep concentration gradients. This study explored the evolution of body fluid regulation following freshwater invasions by the copepod Eurytemora affinis. The goals of this study were to determine (1) whether invasions from saline to freshwater habitats were accompanied by evolutionary shifts in body fluid regulation (hemolymph osmolality) and (2) whether parallel shifts occurred during independent invasions. We measured hemolymph osmolality for ancestral saline and freshwater invading populations reared across a range of common-garden salinities (0.2-25 PSU). Our results revealed the evolution of increased hemolymph osmolality (by 16-31%) at lower salinities in freshwater populations of E. affinis relative to their saline ancestors. Moreover, we observed the same evolutionary shifts across two independent freshwater invasions. Such increases in hemolymph osmolality are consistent with evidence of increased ion uptake in freshwater populations at low salinity, found in a previous study, and are likely to entail increased energetic costs upon invading freshwater habitats. Our findings are consistent with the evolution of increased physiological regulation accompanying transitions into stressful environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary mechanisms of habitat invasions, using the copepod Eurytemora affinis as a model system

The study of the copepod Eurytemora affinis has provided unprecedented insights into mechanisms of invasive success. In this invited review, I summarize a subset of work from my laboratory to highlight key insights gained from studying E. affinis as a model system. Invasive species with brackish origins are overrepresented in freshwater habitats. The copepod E. affinis is an example of such a b...

متن کامل

Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions.

Marine to freshwater colonizations constitute among the most dramatic evolutionary transitions in the history of life. This study examined evolution of ionic regulation following saline-to-freshwater transitions in an invasive species. In recent years, the copepod Eurytemora affinis has invaded freshwater habitats multiple times independently. We found parallel evolutionary shifts in ion-motive...

متن کامل

Feasting in fresh water: impacts of food concentration on freshwater tolerance and the evolution of food × salinity response during the expansion from saline into fresh water habitats

Saline to freshwater invasions have become increasingly common in recent years. A key hypothesis is that rates of freshwater invasions have been amplified in recent years by increased food concentration, yet this hypothesis has remained unexplored. We examined whether elevated food concentration could enhance freshwater tolerance, and whether this effect evolves following saline to freshwater i...

متن کامل

Causes and consequences of recent freshwater invasions by saltwater animals.

Transitions from marine to freshwater habitats constitute dramatic shifts between 'adaptive zones' that have initiated the radiation and speciation of many taxa. As recently as 10?000 years ago, deglaciation resulted in marine fauna being trapped in freshwater lakes. In modern times, human activity has caused the acceleration of freshwater invasions from marine or brackish habitats, leading to ...

متن کامل

The evolutionary diversification of the Centropagidae (Crustacea, Calanoida): A history of habitat shifts.

The copepod family Centropagidae is widely distributed and occurs in marine, estuarine, freshwater, and inland saline settings. Molecular phylogenies based upon the 16S and 28S genes demonstrate a complex biogeographic history, involving at least five independent invasions of continental waters from the sea. The first colonization was ancient, likely into part of Gondwanaland, and resulted in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of evolutionary biology

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 2012